"

3.5 References

  1. Topp, C.G. and P.A. Ferré, 3.1 Water Content, in Methods of Soil Analysis: Part 4 Physical Methods, J.H. Dane and C.G. Topp, Editors. 2002, Soil Science Society of America: Madison, Wisconsin. p. 417-546.
  2. Entekhabi, D., et al., The soil moisture active passive (SMAP) mission. Proceedings of the IEEE, 2010. 98(5): p. 704-716.
  3. Kerr, Y.H., et al., The SMOS mission: New tool for monitoring key elements of the global water cycle. Proceedings of the IEEE, 2010. 98(5): p. 666-687.
  4. Larson, K.M., et al., Use of GPS receivers as a soil moisture network for water cycle studies. Geophys. Res. Lett., 2008. 35(24): p. L24405.
  5. Small, E.E., et al., Validation of GPS-IR Soil Moisture Retrievals: Comparison of Different Algorithms to Remove Vegetation Effects. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016. PP(99): p. 1-12.
  6. Dong, J., et al., Calibration and validation of the COSMOS rover for surface soil moisture measurement. Vadose Zone Journal, 2014.
  7. Zreda, M., et al., COSMOS: The COsmic-ray Soil Moisture Observing System. Hydrology and Earth System Sciences, 2012. 16(11): p. 4079.
  8. Dong, J., et al., Determining soil moisture and soil properties in vegetated areas by assimilating soil temperatures. Water Resources Research, 2016. 52(6): p. 4280-4300.
  9. Sayde, C., et al., Feasibility of soil moisture monitoring with heated fiber optics. Water Resources Research, 2010. 46(6): p. W06201.
  10. Cosh, M.H., et al., The Soil Moisture Active Passive Marena, Oklahoma, In Situ Sensor Testbed (SMAP-MOISST): Testbed Design and Evaluation of In Situ Sensors. Vadose Zone Journal, 2016. 15(4).
  11. Robinson, D.A., et al., Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone J, 2008. 7(1): p. 358-389.
  12. Topp, G.C., J.L. Davis, and A.P. Annan, Electomagnetic determination of soil water content: Measurements in coaxial transmission lines. Water Resources Research, 1980. 16: p. 574-582.
  13. Ochsner, T.E., et al., State of the Art in Large-Scale Soil Moisture Monitoring. Soil Science Society of America Journal, 2013. 77(6): p. 1888-1919.
  14. Krueger, E.S., et al., Concurrent and antecedent soil moisture relate positively or negatively to probability of large wildfires depending on season. International Journal of Wildland Fire, 2016. 25(6): p. 657-668.
  15. Rosenberg, E.A., A.W. Wood, and A.C. Steinemann, Informing Hydrometric Network Design for Statistical Seasonal Streamflow Forecasts. Journal of Hydrometeorology, 2013. 14(5): p. 1587-1604.
  16. Torres, G.M., R.P. Lollato, and T.E. Ochsner, Comparison of Drought Probability Assessments Based on Atmospheric Water Deficit and Soil Water Deficit. Agron. J., 2013. 105(2): p. 428-436.
  17. Dexter, A.R. and N.R.A. Bird, Methods for predicting the optimum and the range of soil water contents for tillage based on the water retention curve. Soil and Tillage Research, 2001. 57(4): p. 203-212.
  18. Dexter, A.R., Soil physical quality: Part I. Theory, effects of soil texture, density, and organic matter, and effects on root growth. Geoderma, 2004. 120(3–4): p. 201-214.
  19. Stange, C.F. and R. Horn, Modeling the Soil Water Retention Curve for Conditions of Variable Porosity. Vadose Zone Journal, 2005. 4(3): p. 602-613.
  20. Rawls, W.J., et al., Effect of soil organic carbon on soil water retention. Geoderma, 2003. 116(1–2): p. 61-76.
  21. Rubin, J., Numerical Method for Analyzing Hysteresis-Affected, Post-Infiltration Redistribution of Soil Moisture1. Soil Science Society of America Journal, 1967. 31(1): p. 13-20.
  22. Persson, M. and A. Saifadeen, Effects of hysteresis, rainfall dynamics, and temporal resolution of rainfall input data in solute transport modelling in uncropped soil. Hydrological Sciences Journal, 2016. 61(5): p. 982-990.
  23. Tsiampousi, A., L. Zdravkovic, and D.M. Potts, A three-dimensional hysteretic soil water retention curve. Geotechnique, 2013. 63(2): p. 155-164.
  24. Luo, L., H. Lin, and P. Halleck, Quantifying Soil Structure and Preferential Flow in Intact Soil Using X-ray Computed Tomography. Soil Science Society of America Journal, 2008. 72(4): p. 1058-1069.
  25. Ng, C.W. and Y. Pang, Experimental investigations of the soil-water characteristics of a volcanic soil. Canadian Geotechnical Journal, 2000. 37(6): p. 1252-1264.
  26. Assouline, S., D. Tessier, and A. Bruand, A conceptual model of the soil water retention curve. Water Resources Research, 1998. 34(2): p. 223-231.
  27. Or, D. and M. Tuller, Liquid retention and interfacial area in variably saturated porous media: Upscaling from single-pore to sample-scale model. Water Resources Research, 1999. 35(12): p. 3591-3605.
  28. Nimmo, J.R., Modeling Structural Influences on Soil Water Retention. Soil Science Society of America Journal, 1997. 61(3): p. 712-719.
  29. Bittelli, M. and M. Flury, Errors in Water Retention Curves Determined with Pressure Plates. Soil Science Society of America Journal, 2009. 73(5): p. 1453-1460.
  30. Gee, G.W., et al., The Influence of Hydraulic Nonequilibrium on Pressure Plate Data. Vadose Zone Journal, 2002. 1(1): p. 172-178.
  31. Solone, R., et al., Errors in water retention curves determined with pressure plates: Effects on the soil water balance. Journal of Hydrology, 2012. 470–471: p. 65-74.
  32. Brooks, R. and A. Corey, Hydraulic Properties of Porous Media. Hydrology Papers, Colorado State University, 1964(March).
  33. Campbell, G.S., A Simple Method for Determining Unsaturated Conductivity From Moisture Retention Data. Soil Science, 1974. 117(6): p. 311-314.
  34. van Genuchten, M.T., A Closed-form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils. Soil Science Society of America Journal, 1980. 44: p. 892-898.
  35. Rawls, W., D. Brakensiek, and K. Saxtonn, Estimation of soil water properties. Transactions of the ASAE, 1982. 25(5): p. 1316-1320.
  36. Rawls, W.J., L.R. Ahuja, and D.L. Brakensiek, Estimating soil hydraulic properties from soils data, in Indirect Methods for Estimating the Hydraulic Properties of Unsaturated Soils, M.T. van Genuchten, F.J. Leij, and L.J. Lund, Editors. 1992, Univ. of California, Riverside: Riverside, California. p. 329-340.
  37. Schaap, M.G., F.J. Leij, and M.T. van Genuchten, ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology, 2001. 251(3-4): p. 163-176.

License

Icon for the Creative Commons Attribution 4.0 International License

Rain or Shine Copyright © 2019 by Tyson Oschner is licensed under a Creative Commons Attribution 4.0 International License, except where otherwise noted.